Pre-class Warm-up!!
A particle moves along a path $c(t)=\left(t^{3}-3\right.$
What is the speed of the particle at $t=1$?
a. 3 units $/ \mathrm{sec}$
b. 4 units $/ \mathrm{sec}$
C. 5 units /sec
d. $\sqrt{ } 5$ units $/ \mathrm{sec}$
e. None of the above.

$$
\begin{aligned}
& c^{\prime}(t)=\left(3 t^{2}, 4 t\right) \\
& c^{\prime}(1)=(3,4) \\
& \text { Speed }=\left\|c^{\prime}(1)\right\|=\sqrt{3^{2}+4^{2}}=5
\end{aligned}
$$

4.1 Paths again. Acceleration and Newton's Second Law

We recall:

- a path is a mapping $c:[a, b]->R^{\wedge} n$
- we can differentiate it to get a velocity vector $v=c^{\prime}(t)$
- it satisfies some rules:
sum rule, scalar multiplication rule, chain rule and NEW dot product rule, cross product rule
- Also new: acceleration vector. $a=V^{\prime}(t)=c^{\prime \prime}(t)$
- Newton: force $=$ mass \times acceleration

Terminology I will not use: regular path.
A path c is regular if $c^{\prime}(t) \neq 0$ for all t.
Example: $c(t)=t^{3}$ paramemzes \mathbb{R} and is not regular,

Typical HW questions:
Find the velocity and acceleration vectors
Verify the rules.
Given values of $c^{\prime \prime}(t), c^{\prime}(0)$ and $c(0)$ find c.
Find the force on a particle under some given acceleration.
Rules for doing $c^{\prime}(t)$

1. $(a c+b d)^{\prime}=a c^{\prime}+b d^{\prime}$
2. chain rule
$3 \cdot \frac{d}{d t}(c \cdot d)=c^{\prime} \cdot d+c \cdot d^{\prime}$
4 If $c, d:[a, b] \rightarrow \mathbb{R}^{3}$ then $(c \times d)^{\prime}=c^{\prime} \times d+c \times d^{\prime}$

Examples:

1. (Like qu 20) If $\|c(t)\|$ is constant then $c^{\prime}(t)$ is perpendicular to $c(t)$ for all t.

Solution: If $\|c(t)\|$ is constant so

$$
\begin{aligned}
& \text { Is } c(t) \cdot c(t)=\|c(t)\|^{2} \\
& \frac{d}{d t}(c(t) \cdot c(t))=c^{\prime}(t) \cdot c(t)+c(t) \cdot c^{\prime}(t) \\
& =2 c^{\prime}(t) \cdot c(t)=0
\end{aligned}
$$

Thus $c^{\prime}(t)$ is perpendicular to $c(t)$.

Example: find the force on a particle in circular motion, of mass 1 , tracing a path $R(t)=(\cos t, \sin t)$
Change to mass $=3, R(t)=(\cos 2 t, \sin 2 t)$
Solution:
Velocity is $v=R^{\prime}(t)=(2 \sin 2 t, 2 \cos 2 t)$
Acceleration is $a=v^{\prime}=(-4 \cos 2 t,-4 \sin 2 t)$
force $=-12(\cos 2 t, \sin 2 t)$

Like questions 13, 14, 23.
The acceleration, initial velocity and initial position of a particle are

$$
a(t)=(1,2,3), v(0)=(2,-1,1), c(0)=(3,2,1)
$$

Find $c(t)$.

$$
\text { Solution: } v(t)=\int a(t) d t=(t, 2 t, 3 t)
$$

$$
V(0)=(2,-1,1)=\text { constant }
$$

$$
v(t)=(t, 2 t, 3 t)+(2,-1,1)
$$

$$
\operatorname{Next} c(t)=\int_{1} v(t) d t
$$

$$
=\left(\frac{t^{2}}{2}, t^{2}, \frac{3 t^{2}}{2}\right)+(2 t,-[, t)+\text { constant }
$$

$c(0)=$ constant $=(3,2,1)$

$$
c(t)=\left(3+2 t+\frac{t^{2}}{2}, 2 n t+t^{2}, 1+t+\frac{3 t^{2}}{2}\right)
$$

